Thermionic Emission from Diamond Films in Molecular Hydrogen Environments
نویسندگان
چکیده
Diamond-based low-work function thermionic electron emitters are in high demand for applications ranging from electron guns and space thrusters to electrical energy converters. A key requirement of such diamond-based electron sources is hydrogen termination of the surfaces which can significantly reduce the emission barrier. However, at high temperatures (≤600°C), terminated hydrogen begins to desorb causing degradation in thermionic emission performance. The purpose of this study is to examine low-pressure hydrogen operating environments as a means to overcome this high-temperature performance limitation by enabling increased thermionic emission currents with improved stability at temperatures ≤600°C. A series of isothermal and isobaric experiments were performed in both nitrogen and hydrogen gas environments to determine the performance enhancement. Diamond electron emitters in both the as-grown and hydrogenated states were characterized at temperatures of 600, 625, and 650°C. An increase in thermionic emission current over vacuum operation was observed following the introduction of hydrogen. Upon evacuation of hydrogen to vacuum, the emission current decreased back to baseline levels. Further experiments in gas environments at a constant pressure (~5.5 × 10−6 Torr) were conducted at temperatures ranging from 700 to 900°C. It was observed that the hydrogen environment promoted increased emission current while also enabling the diamond electron emitters to stably emit at increased temperatures compared with vacuum operation. Analogous experiments using nitrogen environments did not show any measurable performance enhancements, thus verifying that hydrogen is responsible for the observed effect. These results suggest diamond-based electron emitters can have improved thermionic emission performance at temperatures ≤600°C when operating in hydrogen gas environments.
منابع مشابه
Thermionic emission from surface-terminated nanocrystalline diamond
Thermionic electron emission forms the basis of both electron sources for a variety of applications and a direct energy conversion process that is compact and scalable. The present study characterizes thermionic emission from boron-doped nanocrystalline diamond films with hydrogen and nitrophenyl surface termination layers. A hemispherical energy analyzer was used to measure electron energy dis...
متن کاملBeta Radiation Enhanced Thermionic Emission from Diamond Thin Films
Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta rad...
متن کاملAdvances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond
Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e....
متن کاملSolid-State and Vacuum Thermionic Energy Conversion
A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and >1W/cm power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using ...
متن کاملDeposition and Characterization of Si-Doped Diamond Films Using Tetraethoxysilane onto a WC-Co Substrate
Silicon-doped (Si-doped) diamond films were deposited on a Co-cemented tungsten carbide (WC-Co) substrate using the hot filament chemical vapor deposition (HFCVD) method with a mixture of acetone, tetraethoxysilane (TEOS), and hydrogen as the recant source. The as-deposited doped diamond films were characterized with field emission scanning electron microscopy (FE-SEM), Raman spectrum, and X-ra...
متن کامل